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Abstract. The phenomenon of instability in pressurized molecular crystals is studied using
the lattice-dynamics approach. General expressions for the elastic moduli are obtained taking
into account both short-range and long-range (electrostatic) interactions within the framework
of the quasi-harmonic approximation. The behaviour of a system under changing pressure and
temperature conditions and the Born stability criteria are investigated. Two types of instabilities,
dynamical and thermodynamical, associated with the elastic moduli are presented. The
dynamical instability occurs when the instability of acoustic modes of the phonon Hamiltonian
occurs in theq = 0 region. The nature of thermodynamical stability implies that the equilibrium
state of the crystal becomes thermodynamically unstable with respect to a small homogeneous
deformation of the crystal lattice when the Born stability criteria are violated for isothermal or
adiabatic moduli. These types of instabilities are illustrated in a series of calculations for ice
Ic using the SPC potential for water’s interactions. The results show that one of the stability
conditions for the isothermal (adiabatic) moduli (C11− |C12| > 0) is violated atP ' 3–7 kbar
and, as a consequence, thermodynamical instability occurs. In contrast, the dynamical instability
of the phonon spectrum occurs at a significantly higher pressure, about 20 kbar.

1. Introduction

The novel phenomenon of a pressure-driven crystalline→ amorphous transformation has
been observed in ice Ic [1],α-quartz [2] and other materials [3–6]. The nature of this
process is not well understood despite a number of theoretical and experimental studies
having been performed. The initial proposal for the mechanism for the transformation in
Ic was that it is due to a ‘melting’ effect [1]. This postulate was based largely on the
empirical observation that the transition is very sharp with respect to the change in pressure
and occurs at a pressure very close to that of the solid–liquid phase boundary extrapolated
to lower temperature. Thermodynamically, the melting pressure is that at which both the
crystalline and the amorphous phase can coexist and at which the Gibbs free energies of
the two phases are equal. However a recent re-examination [7] of the melting curve of
ice Ic showed that thermodynamic ‘melting’ should occur at a pressure much lower than
that at which it is experimentally observed. On the other hand, it has been shown that the
decrease in melting point with pressure is not a necessary condition for an order–disorder
transformation. The most significant observation was made concerning ice clathrates [8].
It was found that ice clathrates collapse into high-density phases at high enough pressure,
regardless of their melting behaviours.

In an earlier theoretical MD calculation [9], it was suggested that the mechanism
for pressure-induced amorphization in ice Ih is due to a mechanical instability in the
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water framework. The adiabatic elastic moduli calculated by the MD technique at the
transition point show that there is a violation of the Born criteria for these moduli. Similar
mechanical instabilities were also found inα-quartz (SiO2) andα-berlinite (AlPO4) [10–12]
by employing the lattice-dynamics method developed for calculation of the elastic moduli
of ionic crystals [13]. The lattice-dynamics approach can give a more detailed picture of the
phenomenon insofar as it permits the investigation of the behaviour of selected vibrational
modes at any point of the Brillouin zone. In fact, it was found for SiO2 [10–12] that a
softening of the lowest acoustic branch at the Brillouin zone-edge K point occurs at a lower
pressure than does the mechanical instability.

The primary objective of this paper is to extend the lattice-dynamics method to the
investigation of the phenomenon of instability in pressurized molecular systems. The ‘rigid’-
molecule approximation is often used in the simulation of molecular crystals. Therefore, the
dynamical matrix of the system includes the translation, rotational and mixed terms [14].
The well-known expressions for the calculation of the elastic moduli of ionic crystals are not
suitable for molecular crystals since rotational degrees of freedom need not be considered.
In this paper, analytical expressions appropriate for the elastic moduli of molecular solids
are derived.

The second goal of this paper is the refinement of the concept of ‘mechanical instability’.
This term has often been used to describe the violation of the Born stability conditions for
the isothermal [15], adiabatic [9] and elastic moduli (dynamical moduli) determining the
behaviour of the acoustic modes of the phonon Hamiltonian in theq = 0 region [10–12].
However, in the strict theory these moduli are not the same and do not coincide. It will be
shown here that the instability of a crystal associated with isothermal or adiabatic moduli
has an origin different from that of the instability associated with the dynamical moduli.

The expressions for the elastic moduli of a molecular crystal derived in this paper may
be used for the investigation of the stability problem for ice and clathrate hydrates under
pressure. As a first example of applications of this kind, we chose ice Ic because of the
simplicity of the cubic crystal structure. The calculation for other, more complex, crystal
structures will be the subject of further investigations.

The organization of this paper is as follows. In the next section, the analytical theory for
the derivation of elastic moduli under pressure will be given. The results of the calculations
on ice Ic using the SPC potential for water’s interactions [16] will be presented and discussed
in section 3. The paper concludes with a brief summary of the main results.

2. Theoretical details

The quasi-harmonic approximation is used in this paper for calculation of the isothermal and
adiabatic moduli. It is well known [17] that this approximation is adequate for calculations of
the thermal equation of state and the elastic moduli. The thermal magnitudes are determined
here by the first and second derivatives of the free energyFqh = U + Fs with respect to
the strain, whereU is the potential energy of the crystal andFs is the vibrational part of
the free energy. The expressions for the elastic moduli [17], for example for the isothermal
moduli,Cisαβστ , can be divided into two parts in the quasi-harmonic approximation:

Cisαβστ = C0
αβστ + Cis(1)αβστ (1)

where

C0
αβστ =

1

V0

(
∂2U

∂ηαβ∂ηστ

)
0

(2)
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and, in the case of isotropic compression,C
is(1)
αβστ takes the form

C
is(1)
αβστ =

1

V0

(
∂2Fs

∂ηαβ∂ηστ

)
0

− P(δασ δβτ + δατ δβσ − δαβδστ ) (3)

where the Lagrangian strain tensorηαβ is determined throughuα,β magnitudes describing
the general homogeneous deformation of any point of the crystal:

x ′α =
∑
β

(δαβ + uα,β)xβ (4)

ηαβ = 1

2

(
uα,β + uβ,α +

∑
γ

uγ,αuγ,β

)
= ηβα. (5)

C0
αβστ has the same form as it does with the harmonic approximation but here it is dependent

on the temperatureT and the pressureP to account for the change in the equilibrium
configuration of the system. The equilibrium configuration is determined by the equation

1

V0

(
∂Fqh

∂ηαβ

)
0

= −Pδαβ. (6)

The derivatives in (2), (3) and (6) with respect toηαβ are calculated for the equilibrium
configuration andV0 is the appropriate equilibrium volume. The second term in (1) is
defined by the derivatives of the eigenfrequencies of the phonon Hamiltonian with respect
to ηαβ and depends explicitly both onT and onP .

To derive an expression forC0
αβστ we shall consider both the equation of motion for

the elastic wave appropriate for a crystal with potential energyU [18], namely

ρω2ūα =
∑
β

(∑
γ λ

Sαγβλqγ qλ

)
ūβ (7)

and the solutions of lattice-dynamics equations for molecular crystals [19]:

mkω
2(q)Ut

α(k, q) =
∑
k′,β

(D̃tt
αβ(q, kk

′)Ut
β(k
′, q)+ D̃tr

αβ(q, kk
′)Ur

β(k
′, q))

Iαα(k)ω
2(q)Ur

α(k, q) =
∑
k′,β

(D̃rt
αβ(q, kk

′)Ut
β(k
′, q)+ D̃rr

αβ(q, kk
′)Ur

β(k
′, q))

−ω2(q)
∑
β 6=α

Iαβ(k)U
r
β(k, q) (8)

for the acoustic branch in the long-wavelength limit (q→ 0), obtained by the perturbation-
theory technique. The terms associated with the macroscopic Coulomb field were omitted
from (7) and (8) because our concern is only with the expressions for the elastic moduli and
the piezoelectric effects will not be considered here. In (8)D̃ii ′

αβ(q, kk
′) are the translational

(i, i ′ = t), rotational (i, i ′ = r) and mixed(i = t, i ′ = r or i = r, i ′ = t) terms of
the dynamical matrix of the crystal. The tilde means that the part associated with the
macroscopic field is excluded from the matrix.ω(q) andUi ′(k, q) are the phonon frequency
and the associated eigenvectormk andIαβ(k) are the mass and the moment of inertia tensor
of the kth molecule. We restrict the discussion here to the case in which the total dipole
moment of the unit cell and the net charge of molecules are equal to zero. In (7)ρ and
ūα are the mass density and the amplitude of the displacement vector. TheSαβστ tensor is
related to theC0

αβστ tensor in the following manner [20]:

Sαβστ = C0
αβστ + δασ Sβτ (9)
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From (6), we obtain forSβτ

Sβτ = 1

V0

(
∂U

∂ηβτ

)
0

= −Pδβτ − 1

2V0

∑
j

∂ lnω2
j

∂ηβτ
ε(ωj , T ) (10)

where the summation onj is over all phonon modes of the crystal and

ε(ωj , T ) = 1

2
h̄ωj + h̄ωj

exp[h̄ωj/(kT )] − 1
(11)

is the vibrational energy corresponding to thej th mode. Now we consider the one-
dimensional set of solutions appropriate to a fixedq direction, for which we replaceq
by εq and expand all quantities in a series ofε:

D̃ii ′
αβ(εq, kk

′) = D̃ii ′(0)
αβ (k, k′)+ iε

∑
γ

D̃
ii ′(1)
αβ,γ (k, k

′)qγ + 1

2
ε2
∑
γ λ

D̃
ii ′(2)
αβ,γ λ(k, k

′)qγ qλ + · · ·

(12)

ω(εq) = εω(1)(q)+ 1
2ε

2ω(2)(q)+ · · · (13)

Ui
α(k, εq) = Ui(0)

α (k, q)+ iεUi(1)
α (k, q)+ 1

2ε
2Ui(2)

α (k, q)+ · · · . (14)

Details of the coefficients of expansioñDii ′(0)
αβ (k, k′), D̃ii ′(1)

αβ,γ (k, k
′) and D̃ii ′(2)

αβ,γ λ(k, k
′) are

presented in the appendix.
Using perturbation theory and the expansions (12)–(14) the solution of (8) gives for the

polarization vector of zeroth order(∑
k mk

υa

)
[ω(1)(q)]2ūα =

∑
β

{∑
γ λ

{[αβ, γ λ] + (αγ, βλ)}qγ qλ
}
ūβ (15)

whereυa is the volume of the cell. A more detailed discussion of the analogous procedure
was presented in [13] for the case of ionic crystals. The expressions for square and round
brackets

[βα, γ λ] = 1

2υa

∑
kk′
D̃
tt (2)
αβ,γ λ(k, k

′) (16)

(αβ, γ λ) = − 1

υa

∑
kk′,µν

0µν(kk
′)
∑
k′′
Bνα,β(k, k

′′)
∑
k′′′
Bµγ,λ(k

′, k′′′) (17)

are closely related to the analogous expressions for the ionic crystals. However, the matrix
0µν(kk

′) has the size 6n× 6n in our case (n is the number of molecules in the cell) and is
defined by the following relationships:

0µν(kk
′) = 0 if k = 1, µ 6 3 or k′ = 1, ν 6 3∑

k′,γ

0µγ (kk
′)Aγν(k′, k′′) = δµνδk,k′′ otherwise. (18)

The indicesk, k′, k′′ andk′′′ range from 1 ton and the indicesµ, ν andγ run from 1 to
6 in the formulae (16)–(18). The matrix̂A(k, k′) is made for eachk, k′ from four 3× 3
matrices:

Â(k, k′) =
(
D̃
tt (0)
αβ (kk′) D̃

tr(0)
αβ (kk′)

D̃
rt (0)
αβ (kk′) D̃

rr(0)
αβ (kk′)

)
(19)

and the matrixB̂γ (k, k′) for eachk, k′, j from two 3× 3 matrices:

B̂γ (k, k
′) =

(
D̃
tt (1)
αβ,γ (kk

′)
D̃
tr(1)
αβ,γ (kk

′)

)
. (20)
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The expressions (16)–(20) and the one presented in the appendix are distinct from the
analogous expressions in [13] since a different representation of the dynamical matrix and
the definition of reciprocal-lattice vectors was used here [19].

By comparing (7) and (15) and using (9) one obtains

C0
αγβλ + C0

αλβγ + 2δαβSγλ = 2[αβ, γ λ] + (αγ, βλ)+ (αλ, βγ ) (21)

or

C0
αγβλ + C0

αλβγ = 2{αβ, γ λ}. (22)

Here a new symbol, the curly bracket, is introduced:

{αβ, γ λ} = [αβ, γ λ] − δαβSγλ + 1
2((αγ, βλ)+ (αλ, βγ )). (23)

From (23) and the following symmetry properties of square and round brackets:

[αβ, γ λ] = [βα, γ λ] = [αβ, λγ ] (24)

(αβ, γ λ) = (γ λ, αβ) (25)

it follows that the shaped brackets have the symmetry of the square brackets. On this basis
equation (22) reduces to the case already familiar in ionic crystals (see [13] section 27).
The unique solution of (22) that is symmetrical with respect to the first pair of indices is as
follows [13]:

C0
αγβλ = {αβ, γ λ} + {βγ, αλ} − {βλ, αγ }. (26)

The fulfilment of 15 additional conditions (see [13] section 27) is necessary in order that
C0
αγβλ will be symmetrical with respect to the permutation of the first and second pairs of

indices. For molecular crystals it takes the form

{βγ, αλ} = {αλ, βγ }. (27)

In the case of multiple lattices (n 6= 1), the expression (26) takes into account the internal
strain of the cell (round brackets) which is impossible to compute in theC0

αγβλ components
via numerical differentiation of the potential energyU with respect to the strainηαβ . The
stability of the acoustic modes of the phonon Hamiltonian atq → 0 is determined by the
values of the components of theSαβστ tensor (expressions (7) and (9)). However, it is more
convenient to use another tensor:

C
dyn

αβστ = C0
αβστ − 1

2(2Sαβδστ − Sασ δβτ − Sατ δβσ − Sβτ δασ − Sβσ δατ ) (28)

which was derived from the stress–strain relations in [20]. This tensor is symmetrical with
respect to the interchangesα, β andσ, τ and, in the isotropic case(Sαβ = −S0δαβ), it has
the full symmetry of the elastic constants. In the isotropic case [20]

C
dyn

αβστ = C0
αβστ − S0(δασ δβτ + δατ δβσ − δαβδστ ) (29)

and it may replace theSαβστ tensor in equation (7). From (29) it follows that

C
dyn

αβστ − Cisαβστ = (P − S0)(δασ δβτ + δατ δβσ − δαβδστ )− 1

V0

(
∂2Fs

∂ηαβ∂ηστ

)
0

. (30)

From (10) and (30) the difference between the components of the dynamical (C
dyn

αβστ ) and
isothermal tensors is determined by the magnitudes of the first and second derivatives of
the vibrational part of the free energy. For ices this difference is very significant, as will
demonstrated in the next section.

The violation of the Born stability conditions for theCdynαβστ tensor (in the isotropic
case) reflects the instability of acoustic modes of the phonon Hamiltonian, or in other
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words, the dynamical instability of the crystal. This instability is associated with the
imaginary frequencies near the0 point in the phonon spectrum above the critical pressure
or temperature.

We prove now that the violation of the stability conditions for the isothermal or
adiabatic tensors indicates a thermodynamical instability of the crystal. A thermodynamical
instability is perceived here in the traditional meaning [21] as a macroscopic instability of
the equilibrium state of the system with respect to small deviations from this equilibrium
state. With the familiar approach (see [21] section 21) we consider the deviation from the
equilibrium state at the temperatureT0 and the pressureP0 of the closed macro-system part.
In this equilibrium statePcrys = P0 andTcrys = T0, the crystal under stress has energyE,
entropyS and volumeV , as was shown in [21], the magnitude

8̃0 = E − T0S + P0V (31)

decreases on the return of this closed macro-system to the equilibrium state and8̃ has
its minimum in the equilibrium state. This property is evident from the law of increasing
entropy for a closed macro-system (see [21]). Hence it follows that the change in8̃ is
positive relative to the equilibrium configuration

18̃ > 0. (32)

Consider two different types of deviation whereby the deviation of the crystal’s configuration
from the initial equilibrium configuration is by small homogeneous deformations of the
crystal lattice at a constant temperature or with constant entropy. In the first case, when
Tcrys = T0, we have for the free energy of the crystal

F = E − T0S (33)

and

18̃ = (1F)Tcrys=T0 + P01V. (34)

By using (6) and the relationship between the volumeV in the deformed state and the
volumeV0 in the initial state [17]

V = [|det(1+ 2ηαβ)|]1/2V0 (35)

it is possible to account for the change in18̃ relative to equilibrium to within terms of the
second order on the strain:

18̃ = 1

2
V0

∑
αβστ

Cisαβστ ηαβηστ > 0. (36)

In the second case, whenS = S0, we have

18̃ = (1E)S=S0 + P01V. (37)

By using the relationship

1

V0

(
∂E

∂ηαβ

)
S=S0

= −P0δαβ (38)

we derive in a similar way

18̃ = 1

2
V0

∑
αβστ

Cadαβστ ηαβηστ > 0 (39)

where

Cadαβστ =
1

V0

(
∂2E

∂ηαβ∂ηστ

)
S=S0

− P0(δασ δβτ + δατ δβσ − δαβδστ ) (40)
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is the adiabatic tensor [17].
So the positive definiteness of the adiabatic and isothermal tensors (the Born stability

criteria) are necessary for the stable equilibrium of a crystal. The failure of either of
the two conditions brings into existence a small deformation of the crystal for which
8̃ decreases relative to that of the initial equilibrium configuration. This would mean
that this configuration is unstable. In this case the crystal structure deviates from the
initial equilibrium configuration to a deformed structure which is the true stable equilibrium
configuration, resulting in a structural phase transition.8̃ coincides with the Gibbs free
energy for the initial and transformed phases. Hence, from (36) and (39), the Gibbs free
energy of the initial phase is always larger than that of the transformed phase since8̃

decreases on the return to the equilibrium state. This type of phase transition takes place
only if the usual transition, in which the Gibbs free energies of the two phases are equal,
does not occur. This is evidently true for ice Ic, taking into account the results of [7, 9],
in which the thermodynamic ‘melting’ occurs at a pressure much lower than that which
would be implied by the violation of the Born stability conditions for adiabatic moduli. The
results of [15] are also a good illustration of the general considerations given above. The
elastic stiffness coefficientsBij in [15] are really the isothermal moduli for the case of a
non-isotropic applied stress if one adheres to the definition used in our paper (see [17]). It
has been shown in [15] that the actual instability observed by direct molecular dynamics
simulation occurs at a point where the stability criteria are violated forBij . According to
our analysis this means that the system becomes thermodynamically unstable above this
point.

From knowledge of the isothermal moduli, the change in equilibrium state for a small
change in pressure and temperature can be obtained:

1η
eq

αβ = −
1

V0

∑
στ

C
(is)−1
αβστ F

s
T ,στ1T −

∑
σ

C
(is)−1
αβσσ 1P (41)

where

F sT,στ =
(
∂2F s

∂T ∂ηστ

)
0

andC(is)−1
αβστ is the inverse ofC(is)αβστ . This formula is a direct generalization of the expression

given in [17]. Equation (41) permits the study of the gradual evolution of a system from
any known thermodynamic starting point. Its use is illustrated in the ice Ic calculation
presented in the next section.

3. The calculation for ice Ic

As a first application of the analytical expressions derived above, in this section we
investigate the stability of ice Ic under compression. Ice Ic has a simple diamond structure
for the oxygen atom arrangement. The interactions between the water molecules are
described by the SPC potential. It had previously been shown that the SPC model gives very
reasonable structural and vibrational properties for different polymorphic forms of ice [22].
In the SPC model, the Coulomb interaction is described by setting chargesqO = −0.82|e|
on the oxygen atom andqH = 0.41|e| on hydrogen atoms (e is the electron charge). The
short-range interaction is considered between the oxygen atoms only and it is described by
the formula

VO−O = 4ε

[(
σ

R

)12

−
(
σ

R

)6
]

(42)
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where σ = 3.16 Å, 4ε = 2.60 kJ mol−1. The water molecule is assumed to be rigid
with O–H distances equal to 1.0̊A and the valence H–O–H angle 109◦28′. The extended
elementary cell used in the calculations contains 64 water molecules. The oxygen atoms
of water molecules were arranged initially in the cubic ice Ic structure with the hydrogen
atoms placed in anad hoc manner according to the Bernal–Fowler rules [23]. A zero-
dipole-moment cell was then prepared by permutating the positions of the hydrogen atoms
until the net dipole vanished. For a larger cell size, the arrangement of hydrogen atoms
chosen in this manner comes closer to the cubic symmetry. The calculation of the free
energyF at T = 0 andP = 0 for various values of the cell parameter showed thatF has a
minimum for the SPC potential whena = 12.82 Å, which is comparable to the experimental
value of a = 12.70 Å. It should be noted that the vibrational part of the free energyFs
gives a considerable contribution toFqh, amounting to about 25% of the potential energy
contribution (U ).

The thermal expansion and isothermal compression values atT = 0, 130 and 250 K
of ice Ic were computed from the theoretical equilibrium configuration atT , P = 0
(a = 12.82 Å) using the formulae presented in section 2. The expressions for the dynamical
(Cdynαβγσ ), isothermal and adiabatic moduli included also the derivatives of the frequencies
of the phonon spectrum with respect to the strain. These derivatives were calculated
numerically with the help of the algorithms [24] which give a guaranteed precision for
the frequencies for any configuration. The calculated adiabatic moduli atP = 0 (in kbar)
wereC11 = 129,C12 = 114 andC44 = 51 atT = 0 K; C11 = 116,C12 = 104 andC44 = 37
at T = 130 K; andC11 = 92, C12 = 86 andC44 = 23 at T = 250 K. These values are
of the same order of magnitude as the moduli calculated [9] or measured [25] for ice Ih.
It is noteworthly that the differenceC11− |C12| coincides for the isothermal and adiabatic
moduli in the case of cubic symmetry at anyP andT [17].

In figure 1,C11−|C12| is plotted as a function ofP for the adiabatic (isothermal) moduli
at T = 0 (bottom curve). The upper curve corresponds to the same stability condition for
dynamical moduli. Under an external pressure, atT = 0 the calculation shows that one of
the Born stability conditions,C11 > |C12|, is violated for the adiabatic and isothermal moduli
at P ' 3–7 kbar. The dynamical instability occurs at a higher pressure (P ' 20 kbar).
The reason for such a large difference can be rationalized by a qualitative analysis of
equation (30). This formula is valid as long asSαβ (formula (10)) is isotropic (because of
cubic symmetry) and

1 = P − S0 = − 1

2V0

∑
j

∂ lnω2
j

∂ηii
ε(ωj , T ) (43)

for any i. On defining the average phonon spectrum as

ω̄2 = 1

6nN

∑
j

ω2
j

whereN is the number of elementary cells,1 is approximately [17]

1 = γUav (44)

where

γ = −1

2

∂ ln ω̄2

∂ηii

is the averaged Gruneisen constant and

Uav = 1

V0

∑
j

ε(ωj , T )
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Figure 1. The evolution of the dynamical (curve (a)) and thermodynamical (curve (b)) stability
conditionsC11− |C12| at T = 0 versusP .

is the vibrational energy calculated per unit volume.γ is calculated to be a positive value
close to unity. ForUav at T = 0, taking into account the phonon spectrum of ice Ic within
the energy interval 0–1000 cm−1, one obtains

Uav ∼= 6nh̄
√
ω̄2

2υa
≈ 10 kbar. (45)

Only the first term in expression (30) gives the difference between the two curves in figure 1,
about 20 kbar taking into consideration that1 enters with opposite signs in the differences
C
dyn

11 −Cis11 andCdyn12 −Cis12. The second term in (30) is approximately proportional toUav

at T = 0 and it gives essentially the same contribution to the difference between two curves
in figure 1. Thus the large pressure difference between the dynamical and thermodynamical
instabilities is associated with the features of the phonon spectrum of ice Ic. The existence
of such features may be peculiar to all ices and ice clathrates in view of the similarity in
their phonon spectra.

The dispersion curves atT = 0 for the lowest acoustic mode are depicted in
figure 2 calculated at various values ofP in the direction from the zone centre to the
K − (2π/a)( 3

4,
3
4, 0) point for small values ofq. This mode is softened at the point

corresponding to the thermodynamical instability (P = 7 kbar) but the full-scale proximity
of dynamical instability emerges at a higher pressure (P = 19 kbar). The calculations at
T 6= 0 show that, in this case, the thermodynamical instability occurs at a higher temperature
for a lower pressure, forT = 130 K atP = 6 kbar and forT = 250 K atP = 3 kbar.
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Figure 2. The dispersion curves for the lowest acoustic mode at variousP values calculated in
the direction from the centre of zone to the K point for small values ofq.

The dependence of the differenceC11− |C12| on P for these temperatures is presented in
figure 3 for the adiabatic (isothermal) moduli.

4. Conclusion

The general expressions for the elastic moduli of a molecular crystal have been obtained
within the framework of the quasi-harmonic approximation, taking into account both short-
range and long-range (electrostatic) interactions. These expressions permit the investigation
of the stability of a crystalline molecular system under variable pressure and temperature
conditions through the monitoring of the Born stability conditions. The dynamical and
thermodynamical instabilities associated with the elastic moduli have been presented.
The dynamical type is associated with the instability of acoustic modes of the phonon
Hamiltonian in theq = 0 region. The thermodynamical instability is related to the fact
that the equilibrium state of a crystal becomes thermodynamically unstable with respect to
a small homogeneous deformation of the crystal lattice when the stability conditions are
violated for the isothermal or adiabatic moduli. In this case, the Gibbs free energy of the
initial phase is always larger than that of the transformed phase at the point of the structural
phase transition.

The calculations on ice Ic, using the SPC potential for water interactions, show that one
of the conditions for the modulus (C11 − |C12| > 0) violated atP ' 3–7 kbar and, as a
consequence, thermodynamical (mechanical) instability occurs. The dynamical instability
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Figure 3. The evolution of the stability conditionC11 − |C12| (a) at T = 130 K and (b) at
T = 250 K versusP obtained for the adiabatic (isothermal) moduli.

or the instability of the phonon spectrum occurs at a much higher pressure. The qualitative
analysis indicates that similar behaviour may be peculiar to the ices and ice clathrates as a
whole. It will be interesting to examine this assumption further and in more detail by using
the lattice-dynamics approach.
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Appendix

A1. The zeroth-order case
Matrices D̃tt (0)

αβ (k, k′), D̃rt (0)
αβ (k, k′), D̃tr(0)

αβ (k, k′) and D̃rr(0)
αβ (k, k′) are the same as the

matrices forming the dynamical matrix of the crystal (see [19]) atq = 0. The term in
the Coulomb part of the dynamical matrix appropriate to the macroscopic field should be
elminated.
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A2. The first-order case

Here

D̃
tt (1)
αβ,γ (k, k

′) =
∑
l′
8
tt(N)
αβ (0k, k′l′)Aγ (l′)+

∑
m,m′

Z(k,m)Z(k′, m′)5αβ,γ (A1)

D̃
tr(1)
αβ,γ (k, k

′) =
∑
l′
8
tr(N)
αβ (0k, k′l′)Aγ (l′)+

∑
m,m′

Z(k,m)Z(k′, m′)
∑
µν

εµανxν(km)5µβ,γ

(A2)

where8ii ′(N)
αβ are non-coulombic force constants,Aγ are the translational vectors of the

cell, Z(k,m) is the charge of the atom (km), xν(km) is the position vector of themth atom
in the kth molecule relative to the centre of mass of this molecule andεµαν is the full
antisymmetrical tensor (ε123= 1). Furthermore:

5αβ,γ = 4π

υa

∑
G 6=0

{[
1

4η2
(δαγGβ + δβγGα)H

(
G2

4η2

)
+GαGβGγ

1

8η4
H ′
(
G2

4η2

)]

× sin(G · x)+ 1

4η2
GαGβxγH

(
G2

4η2

)
cos(G · x)

}
−
∑
l′
8c
αβ(0k, k

′l′)Aγ (l′) (A3)

where

8c
αβ(0k, k

′l′) = (A(l′)− x)α(A(l′)− x)β
|A(l′)− x|5

(
3erfc(y)+ e−y

2

π1/2
(4y3+ 6y)

)

− δαβ

|A(l′)− x|3
(

erfc(y)+ 2y e−y
2

π1/2

)
(A4)

herex = x(0km) − x(0k′m′), G are the reciprocal-lattice vectors,y = η|A(l′) − x|,
H(x) = e−x/x,

erfc(y) = 1− 2

π1/2

∫ y

0
e−x

2
dx (A5)

and η is an arbitrary constant, the value of which is chosen so the fast convergence was
provided for the direct and reciprocal lattices.

A3. The second-order case

Here

D̃
tt (2)
αβ,γ λ(kk

′) = −
∑
l′
8
tt(N)
αβ (0k, k′l′)Aγ (l′)Aλ(l′)+

∑
mm′

Z(km)Z(k′m′)

×
{∑

l′
8c
αβ(0k, k

′l′)Aγ (l′)Aλ(l′)+ π

η2υa

×
∑
G 6=0

[
(δαλδβγ + δβλδαγ −GαGβxλxγ )H

(
G2

4η2

)
cos(G · x)

−(δαλGβxγ + δβλGαxγ + δβγGαxλ + δαγGβxλ)H

(
G2

4η2

)
sin(G · x)
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+ 1

2η2
(δαλGβGγ + δβλGαGγ + δβγGαGλ + δαγGβGλ + δγλGαGβ)H

′

×
(
G2

4η2

)
cos(G · x)− 1

2η2
(Gλxγ +Gγ xλ)GαGβH

′

×
(
G2

4η2

)
sin(G · x)+ GαGβGγGλ

4η4
H ′′

(
G2

4η2

)
cos(G · x)

]}
. (A6)
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